skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Sirui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 20, 2026
  2. Free, publicly-accessible full text available December 1, 2025
  3. Free, publicly-accessible full text available December 7, 2025
  4. Work in machine learning and statistics commonly focuses on building models that capture the vast majority of data, possibly ignoring a segment of the population as outliers. However, there may not exist a good, simple model for the distribution, so we seek to find a small subset where there exists such a model. We give a computationally efficient algorithm with theoretical analysis for the conditional linear regression task, which is the joint task of identifying a significant portion of the data distribution, described by a k-DNF, along with a linear predictor on that portion with a small loss. In contrast to work in robust statistics on small subsets, our loss bounds do not feature a dependence on the density of the portion we fit, and compared to previous work on conditional linear regression, our algorithm’s running time scales polynomially with the sparsity of the linear predictor. We also demonstrate empirically that our algorithm can leverage this advantage to obtain a k-DNF with a better linear predictor in practice. 
    more » « less